Главная Атомная и ядерная физика Фотоэффект


















Фотоэффект

Квантовая гипотеза Планка была оценена по достоинству и получила дальнейшее развитие прежде всего в работах Эйнштейна. Он первый указал на то, что кроме теплового излучения существуют и другие явления, которые можно объяснить на основе квантовой гипотезы.

В 1905 г. Эйнштейн выдвинул гипотезу световых квантов. Он предположил, что дискретный характер присущ не только процессам испускания и поглощения света, но и самому свету. Гипотеза о корпускулярных свойствах света позволила объяснить результаты экспериментов по фотоэффекту, совершенно непонятные с позиций классической электромагнитной теории. Рассмотрим этот вопрос более подробно.

Фотоэффект. Вольт-амперная характеристика

Фотоэлектрическим эффектом, или фотоэффектом называют испускание электронов веществом под действием света. Исследование закономерностей фотоэффекта проводят на установке, схематически показанной на рис. 1а.

При освещении катода К монохроматическим светом через кварцевое окошко (пропускающее и ультрафиолетовые лучи) из катода вырываются фотоэлектроны, и в цепи возникает фототок, регистрируемый гальванометром G. График зависимости фототока I от приложенного внешнего напряжения V между катодом и анодом А представлен на рис. 1б. Этот график называют характеристикой фотоэлемента, т. е. того прибора, в котором наблюдают фотоэффект. Для этой зависимости характерно наличие участка тока насыщения Is, когда все электроны, вырванные светом с поверхности катода К, попадают на анод А, и другого участка, на котором фототок уменьшается до нуля при некотором внешнем задерживающем напряжении V1 (на рис. 1б V1 < 0).

Многочисленными экспериментами были установлены три основные закономерности фотоэффекта:

С точки зрения классических волновых представлений сам факт вырывания электронов из металла неудивителен, так как падающая электромагнитная волна вызывает вынужденные колебания электронов в металле. Электрон, поглощая энергию, может накопить ее в количестве, достаточном для преодоления потенциального барьера, удерживающего электрон в металле, т. е. для совершения работы выхода. Если это так, то энергия фотоэлектронов должна зависеть от интенсивности света. Увеличение же интенсивности света приводит лишь к возрастанию числа фотоэлектронов.

Более того, резкое расхождение теории с опытом возникает при очень малой интенсивности света. По классической волновой теории фотоэффект в этих условиях должен протекать с заметным запаздыванием, поскольку требуется конечное время для накопления необходимой энергии. Однако опыт показывает, что фотоэффект появляется практически мгновенно, т.е. одновременно с началом освещения (промежуток времени между началом освещения и появлением фототока не превышает 10-9 с).

Все трудности отпадают, если фотоэффект рассматривать на основе гипотезы Эйнштейна о световых квантах. В соответствии с этой гипотезой падающее монохроматическое излучение рассматривается как поток световых квантов — фотонов, энергия которых связана с частотой соотношением

При поглощении фотона его энергия целиком передается одному электрону. Таким образом, электрон приобретает кинетическую энергию не постепенно, а мгновенно. Этим и объясняется безынерционность фотоэффекта.

Формула Эйнштейна. Полученная электроном энергия частично затрачивается на освобождение из металла. А остальная часть переходит в кинетическую энергию вылетевшего из металла фотоэлектрона. Минимальную энергию, необходимую для освобождения электрона из металла, т. е. для преодоления потенциального барьера, называют работой выхода А. Следовательно, для фотоэлектронов с максимальной кинетической энергией Кs закон сохранения энергии в элементарном акте поглощения фотона можно записать так:

()

Эта формула впервые была получена Эйнштейном и носит его имя — формула Эйнштейна.

Вернемся к формуле Эйнштейна (). Из нее автоматически вытекают следующие закономерности, находящиеся в строгом согласии с опытом.

Частоте ωo соответствует красная граница фотоэффекта, длина волны которой λk=2 πc/ωo. Наличие такой границы совершенно непонятно с волновой точки зрения. Значения λk для некоторых металлов приведены в табл. 1.